A Comparison of Particle Simulation Implementations on Two
Different Parallel Architectures

Jeffrey D. McDonald!

Eloret Institute
3788 Fabian Way,
Palo Alo, CA 94303

Abstract

Direct particle simulation is a powerful method for
analyzing low density, hypersonic re-entry flows. The
method involves following a large sample of represen-
tative gas molecules through motion and collision with
other molecules or with surfaces in the simulated flow.
In this paper, two very different parallel architectures
are examined for their suitability in particle simula-
tion computations, namely the Connection Machine
CM-2 and the Intel iPSC/860. The difference in ar-
chitectures has resulted in very different parallel de-
compositions. The two implementations are described
and performance results are given. Both implemen-
tations achieve performance comparable to a single
Cray-2 CPU, however, this performance is obtained at
the cost of greatly increased programming complezity.

1 Introduction

Particle methods of simulation are of interest pri-
marily for high altitude, low density flows. When a
gas becomes sufficiently rarefied the constitutive rela-
tions of the Navier-Stokes equations (i.e. the Stokes
law for viscosity and the Fourier law for heat conduc-
tion) no longer apply and either higher order relations
must be employed (e.g. the Burnett equations [6]),
or the continuum approach must be abandoned and
the molecular nature of the gas must be addressed ex-
plicitly. The latter approach leads to direct particle
simulation.

1Mailing Address: M.S. 230-2, NASA Ames Research Cen-
ter, Moffett Field CA, 94035.

Leonardo Dagum

Computer Sciences Corp.
M.S. T045-1
NASA Ames Research Center
Moftett Field, CA 94035

1.1 Particle Simulation Method

In direct particle simulation, a gas is described by
a collection of simulated molecules thus completely
avoiding any need for differential equations explicitly
describing the flow. By accurately modelling the mi-
croscopic state of the gas the macroscopic description
is obtained through the appropriate integration. The
primary disadvantage of this approach is that the com-
putational cost is relatively large. Therefore, although
the molecular description of a gas is accurate at all
densities, a direct particle simulation is competitive
only for low densities where accurate continuum de-
scriptions are not available.

For a small discrete time step, the molecular mo-
tion and collision terms of the Boltzmann equation
may be decoupled. This allows the simulated parti-
cle flow to be considered in terms of two consecutive
but distinct events in one time step, specifically there
is a collisionless motion of all particles followed by a
motionless collision of those pairs of particles which
have been identified as colliding partners. The col-
lisionless motion of particles is strictly deterministic
and reversible. However, the collision of particles is
treated on a probabilistic basis. The particles move
through a grid of cells which serves to define the ge-
ometry, to identify colliding partners, and to sample
the macroscopic quantities used to generate a solution.

The state of the system is updated on a per time
step basis. A single time step is comprised of five
events:

1. Collisionless motion of particles.

2. Enforcement of boundary conditions.

w

. Pairing of collision partners.

4. Collision of selected collision partners.

5. Sampling for macroscopic flow quantities.

Detailed description of these algorithms may be found

in [7] and [1].
1.2 Computational Performance

Although particle simulation methods are very
powerful, they are computationally expensive when
applied on a scale large enough to address general
three-dimensional problems. Typically millions of par-
ticles are utilized in a simulation (with as many as
possible being desirable) resulting in large memory
and CPU requirements. Early efforts to make large
scale particle simulation feasible focused on replacing
the underlying algorithms to allow substantial vector-
ization. Vectorization coupled with improvements in
other implementation details led to a speedup of about
100 on Cray-2 computers[7] when compared to other
available simulation methods used at that time[4].

In view of the evident limits to single processor per-
formance, it is of interest to the particle simulation
community to examine the suitability of distributed
memory parallel architectures to problems of this type.
Such machines now offer supercomputer performance
and greater local memory bandwidth making them at-
tractive for use in particle simulation. In the remain-
der of this paper, the implementation of a particle
simulation method on two distinct parallel machines,
namely the Thinking Machines Corp. Connection Ma-
chine CM-2 and the Intel Corp. iPSC/860, is exam-
ined. The architectures of these machines are briefly
outlined, the two implementations are presented, re-
sults from an example simulation are shown, and the
performance and suitability of each machine to this
application are discussed.

2 Target Architectures
2.1 Connection Machine

The Thinking Machines Connection Machine
Model CM-2 is a massively parallel SIMD computer
consisting of many thousands of bit serial data pro-
cessors under the direction of a front end computer.
The system at NASA Ames consists of 32768 bit serial
processors each with 1 Mbit of memory and operating
at 7 Mhz. The processors and memory are packaged as
16 to a chip. Each chip also contains the routing cir-
cuitry which allows any processor to send and receive
messages from any other processor in the system. In
addition, there are 1024 64-bit Weitek floating point

processors which are fed from the bit serial proces-
sors through a special purpose “Sprint” chip. There
is one Sprint chip connecting every two CM chips to
a Weitek. Each Weitek processor can execute an add
and a multiply each clock cycle thus performing at 14
MFLOPS and yielding a peak aggregate performance
of 14 GFLOPS for the system.

The Connection Machine can be viewed two ways,
either as an 11-dimensional hypercube connecting the
2048 CM chips or a 10-dimensional hypercube con-
necting the 1024 processing elements. The first view
is the “fieldwise” model of the machine which has ex-
isted since its introduction. This view admits to the
existence of at least 32768 physical processors (when
using the whole machine) each storing data in fields
within its local memory. The second is the more recent
“slicewise” model of the machine which admits to only
1024 processing elements (when using the whole ma-
chine) each storing data in slices of 32 bits distributed
across the 32 physical processors in the processing el-
ement. Both models allow for “virtual processing”,
where the resources of a single processor or processing
element may be divided to allow a greater number of
virtual processors.

Regardless of the machine model, the architecture
allows interprocessor communication to proceed in
three manners. For very general communication with
no regular pattern, the router determines the destina-
tion of messages at run time and directs the messages
accordingly. This is referred to as general router com-
munication. For communication with an irregular but
static pattern, the message paths may be pre-compiled
and the router will direct messages according to the
pre-compiled paths. This is referred to as compiled
communication and can be 5 times faster than gen-
eral router communication. Finally, for communica-
tion which is perfectly regular and involves only shifts
along grid axes, the system software optimizes the
data layout by ensuring strictly nearest neighbor com-
munication and uses its own pre-compiled paths. This
is referred to as NEWS (for “NorthEastWestSouth”)
communication. Despite the name, NEWS commu-
nication is not restricted to 2-dimensional grids, and
up to 31-dimensional NEWS grids may be specified.
NEWS communication is the fastest.

2.2 Intel iPSC/860

The Intel iPSC/860 (also known as Touchstone
Gamma System) is based on the 64 bit i860 micro-
processor by Intel [5]. The i860 has over 1 million
transistors and runs at 40 MHz. The theoretical peak
speed is 80 MFLOPS in 32 bit floating point and 60

MFLOPS for 64 bit floating point operations. The
1860 features 32 integer address registers, with 32 bits
each, and 16 floating point registers with 64 bits each
(or 32 floating point registers with 32 bits each). It
also features an 8 kilobyte on-chip data cache and a
4 kilobyte instruction cache. There is a 128 bit data
path between cache and registers. There is a 64 bit
data path between main memory and registers.

The 1860 has a number of advanced features to fa-
cilitate high execution rates. First of all, a number
of important operations, including floating point add,
multiply and fetch from main memory, are pipelined
operations. This means that they are segmented into
three stages, and theoretically a new operation can be
initiated every 25 nanosecond clock period. Another
advanced feature is the fact that multiple instructions
can be executed in a single clock period. For exam-
ple, a 32-bit memory fetch, floating add and floating
multiply can all be initiated in a single clock period.

A single node of the Touchstone Gamma system
consists of the 1860, 8 megabytes (MB) of dynamic
random access memory, and hardware for communica-
tion to other nodes. For every 16 nodes, there is also a
unit service module to facilitate access to the nodes for
diagnostic purposes. The Touchstone Gamma system
at NASA Ames consists of 128 computational nodes.
The theoretical peak performance of this system is
thus approximately 7.5 GFLOPS on 64 bit data.

The 128 nodes are arranged in a seven dimensional
hypercube using the direct connect routing module
and the hypercube interconnect technology of the
iPSC/2. The point to point aggregate bandwidth
of the interconnect system, which is 2.8 MB/sec per
channel, is the same as on the iPSC/2. However the
latency for the message passing is reduced from about
350 microseconds to about 90 microseconds. This
reduction is mainly obtained through the increased
speed of the 1860 on the Touchstone Gamma machine,
when compared to the Intel 386/387 on the iPSC/2.
The improved latency is thus mainly a product of
faster execution of the message passing software on

the 1860.

3 Particle Simulation Implementation
3.1 SIMD Implementation

Particle simulation is distinct from other computa-
tional fluid dynamics (CFD) applications in that there
are two levels of parallel granularity in the method.
There is a coarse level consisting of cells in the sim-
ulation (which are approximately equivalent to grid

points in a continuum approach) and there is a fine
level consisting of individual particles. At the time
of the CM-2 implementation there existed only the
fieldwise model of the machine, and it was natu-
ral to decompose the problem at the finest level of
granularity[l]. In this decomposition, the data for
each particle is stored in an individual virtual proces-
sor in the machine. A separate set of virtual processors
(or VP set) stores the geometry and yet another set
of virtual processors stores the sampled macroscopic
quantities.

This decomposition is conceptually pleasing how-
ever in practice the relative slowness of the Connection
Machine router can prove to be a bottleneck in the ap-
plication. This motivated the introduction of several
novel algorithms to minimize the amount of commu-
nication and improve the overall performance in such
a decomposition[1]. In particular, steps 2 and 3 of the
particle simulation algorithm require a somewhat less
than straightforward approach.

The enforcement of boundary conditions requires
particles which are about to interact with a boundary
to get the appropriate boundary information from the
VP set storing the geometry data. Since the number
of particles undergoing boundary interaction is rela-
tively small, a master/slave algorithm is used to min-
imize both communication and computation. In this
algorithm, the master is the VP set storing the particle
data. The master creates a slave VP set large enough
to accommodate all the particles which must undergo
boundary interactions. Since the slave is much smaller
than the master, instructions on the slave VP set ex-
ecute much faster. This more than makes up for the
time that the slave requires to get the geometry infor-
mation and to both get and return the particle infor-
mation.

The pairing of collision partners requires sorting the
particle data such that particles occupying the same
cell are represented by neighboring virtual processors
in the one dimensional NEWS grid storing this data.
Dagum [2] describes different sorting algorithms suit-
able for this purpose. The fastest of these makes use
of the realization that the particle data moves through
the CM processors in a manner analogous to the mo-
tion of the particles in the simulation. The mechanism
for disorder is the motion of particles, and the extent
of motion of particles, over a single time step, is small.
This can be used to tremendously reduce the amount
of communication necessary to re-order the particles.

These algorithms have been implemented in a two-

dimensional particle simulation running on the CM-2.
At the time of implementation, the CM-2 at NASA

Ames had only 64k bits of memory per processor which
was insufficient to warrant a three-dimensional imple-
mentation. Furthermore, the slicewise model of the
machine did not exist and the machine had the slower
32-bit Weitek’s which did not carry out any integer
arithmetic. Nonetheless, with this smaller amount of
memory and fieldwise implementation, the code was
capable of simulating over 2.0 x 10° particles in a grid
with 6.0 x 10*. Performance of the implementation is
discussed later. Details on the fieldwise implementa-
tion and performance of a three-dimensional particle
simulation may be found in [3].

3.2 MIMD Implementation

The MIMD implementation differs from the SIMD
implementation not only because of the difference in
programming models but also because of the difference
in granularity between the machine models. Whereas
the CM-2 has 32768 processors, the iPSC/860 has only
128. Therefore on the iPSC/860 it is natural to apply
a spatial domain decomposition rather than the data
object decomposition used on the CM-2.

In iPSC/860 implementation, the spatial domain
of the simulation is divided into a number of sub-
domains or regions equal to the desired number of
node processes[8]. Communication between processes
occurs as particles pass from one region to another
and 1is carried out asynchronously, thus allowing over-
lapping communication and computation. Particles
crossing region “seams” are treated simply as an ad-
ditional type of boundary condition. Each simulated
region of space is surrounded by a shell of extra cells
that, when entered by a particle, directs that particle
to the neighboring region. This allows the representa-
tion of simulated space (i.e. the geometry definition)
to be distributed along with the particles. The aim is
to avoid maintaining a representation of all simulated
space which, if stored on a single processor, would
quickly become a serious bottleneck for large simula-
tions, and if replicated would simply be too wasteful
of memory.

Within each region the vectorized particle simula-
tion algorithm discussed above are applied. This de-
composition allows for great flexibility in the physical
models used since node processes are asynchronous
and largely independent of each other. Recall that
communication between processes is required only
when particles cross region seams. This is fortuitous
since the particle motion is straightforward and fully
agreed upon. The important area of research has to
do with the modelling of particles and the various in-
teractions they undergo, and since this part of the

problem does not directly affect communication, par-
ticle models can evolve without requiring algorithmic
changes complicated due to the use of multiple pro-
cessors. Also the machine dependent elements of the
implementation can be (and are) encapsulated in a
separate machine dependent code module providing a
certain degree of portability. Performance of the im-
plementation is discussed below.

4 Example Application

An example solution from the Intel iPSC/860 im-
plementation is presented in Figures 1 and 2. The
problem concerns the hypersonic, low density flow
about a two-dimensional circular cylinder. The
freestream gas is pure diatomic oxygen (Oz) at Mach
25 having a temperature of 200K and a density of
2.18 x 1075 Kg/m3. The cylinder has a diameter of
1.44 meters while the upstream molecular mean free
path length is 0.036 meters.

The simulation involves a three-dimensional cell
network of dimension 128 by 128 by 4 finite volume
cells to represent the physical domain. This domain is
divided into 128 regions distributed over the full 128
nodes on the iPSC/860. The diameter of the cylinder
in the non-dimensional simulation is 40 cells and the
mean free path length is 1 cell. This provides the same
Knudsen number as the dimensioned parameters. The
free stream simulation number density is 25 particles
per cell.

Two sets of translational temperature contours are
presented in Figures 1 and 2 corresponding to simu-
lation without and with chemistry modeling respec-
tively. Note the lower temperatures in the chemistry
case due to the dominant O dissociation reaction.
The gas is heated through the bow shock wave and
when the effects of chemistry are included, dissocia-
tion occurs as collisions become more energetic. Since
the dissociation of O3 is an endothermic reaction, this
is accompanied by a drop in the gas temperature in
the post shock region.

5 Performance
5.1 Connection Machine

Dagum’s implementation is two-dimensional. The
performance of the code for a Mach 25 flow over a
double-ellipse (see [1]) is given in Table 1.

Note that peak performance on a 32K machine pro-
cesses particles at a rate of 1.88usec/particle/timestep

120+

100+

o 7
20 40 60 80 100 120

Figure 1: Temperature contours for Mach 25 flow with
no chemistry over a circular cylinder. Contours are
shown for temperatures of 0.2, 0.8, 1.2, 5, 10, 20, 40,
60, 80, 100, and 120 times the freestream temperature.

Table 1: Performance of Particle Simulation on

120+

100+

Figure 2: Temperature contours for Mach 25 flow with
chemistry over a circular cylinder. Contours are shown
for temperatures of 0.2, 0.8, 1.2, 5, 10, 20, 40, 60, 80,

and 100 times the freestream temperature.

Table 2: Performance of Particle Simulation on
the Intel iPSC/860

the CM-2 Processors | ps/prt/step | MFLOPS | efficiency(%)
Processors | ps/prt/step | MFLOPS | efficiency(%) 1 47.3 1.8 100
8,192 6.52 13.2 100 2 24.4 3.5 97
16,384 3.64 23.6 89 4 12.5 6.9 95
32,768 1.88 45.7 87 8 6.35 13.5 93
16 3.25 26.5 91
32 1.63 52.8 91
64 0.85 101 87
using all 32k processors (see [1]). By compar- 128 0.42 215 88
ison, a fully vectorized equivalent simulation on
a single processor of the Cray YMP runs at .
1.0psec/particle/timestep and 86 MFLOPS as mea- 5.2 Intel iPSC/860
sured by the Cray hardware performance monitor.
Note that a significant fraction of a particle simula- McDonald’s implementation is fully three-

tion involves integer arithmetic and the MFLOP mea-
sure is not completely indicative of the amount of
computation involved. These performance results are
illustrated in Figure 3 along with similar iPSC/860,
Cray-2, and Cray-Y/MP results. (The Cray calcula-
tions employed 64-bit precision which is unnecessary
for particle simulation.) Since a 64K Connection Ma-
chine is considered fully configured, the 32K result is
plotted at the 64 node result for the iPSC/860. Per-
formance is measured as the average amount of time
it takes to fully update a single particle over the pe-
riod of a single simulation time step. Currently, work
is being carried out to extend the simulation to three
dimensions using a parallel decomposition which takes
full advantage of the slicewise model of the machine.

dimensional. The performance of the code on a 3D
heat bath is given in Table 2 and illustrated in Figure
3 along with CM-2 and Cray performance results.

At the present time the domain decomposition is
static, however work is being carried out to allow dy-
namic domain decomposition thus permitting a good
load balance to exist throughout a calculation. The
geometry and spatial decomposition of the heat bath
simulation exaggerated the area to volume ratio of the
regions in order to exercise the worst case communica-
tion expected in a real application with dynamic load
balancing. The most promising feature of these results
is the linear speed up obtained, indicating that the
performance of the code should continue to increase
with increasing numbers of processors. This apparent

Figure 3: Comparison of performance of various ma-
chines for particle simulation. Cray results are for a
single processor and employing 64-bit precision.

scalability will soon be tested on the new Intel Delta
prototype having 512 i860 processing nodes.

6 Concluding Remarks

Performance of a particle simulation method as im-
plemented on both the Thinking Machines Corp. CM-
2 and the Intel Corp. iPSC/860 rivals that of highly
optimized Cray implementations. The slicewise archi-
tecture of more recent Connection Machines promises
improved performance on that machine. The linear
speedup behavior observed in early iPSC/860 results
indicates scalability beyond the 128 processors cur-
rently available.

Implementation on both machines is complicated
by the required programming models and portability
to other machines is made difficult due to proprietary
support mechanisms for these models. In the case of
the iPSC/860 this complexity is more easily encap-
sulated into a separate module from physical model-
ing elements, thus making portability to other MIMD
architectures possible through simple replacement of
the machine dependent module. In order to fully uti-
lize the Connection Machine, such encapsulation is not
feasible making for poor portability.

Although the Connection Machine has a higher the-
oretical peak performance, the iPSC/860 has proved
to be a more suitable platform in the context of a par-
ticle simulation. The domain decomposition allowed
by the medium grain parallelism of the iPSC/860 ar-
chitecture results in less interprocessor communication

and a higher percentage of the peak performance is
attained. It is expected that altering the CM-2 im-
plementation to fully utilize the slicewise model will
improve its performance.

Acknowledgements

J.D. McDonald acknowledges support from NASA
contract NCC2-674. L. Dagum is supported through
NASA contract NAS 2-12961. Computer resources for
both the were provided by NASA Ames research cen-
ter.

References

[1] L. Dagum. On the Suitability of the Connection
Machine for Direct Particle Simulation. Techni-
cal Report 90.26, RTACS, NASA Ames Research
Center, Moffett Field, CA 94035, June 1990.

[2] L. Dagum. Sorting for particle flow simulation on
the connection machine. In Horst D. Simon, editor,
Research Directions in Parallel CFD, MIT Press,
Cambridge (to appear), 1991.

[3] L. Dagum. Three-Dimensional Direct Particle
Simulation On the Connection Machine. ATAA-
91-1365, 1991.

[4] V.K. Dogra, J.L. Moss, A.L. Simmonds, Direct
Simulation of Aerothermal Loads for an Aeroassist

Flight Experiment Vehicle, ATAA-87-1546, 1987.

[5] Intel Corporation. 860 64-Bit Microprocessor
Programmer’s Reference Manual. Santa Clara,

California, 1990.

[6] F.E. Lumpkin. Development and Evaluation of
Continuum Models for Translational-Rotational
Noneguilibrium. PhD thesis, Stanford University,
Dept. of Aeronautics and Astronautics, Stanford

CA 94305, April 1990.

[7] J. D.McDonald. A Computationally Efficient Par-
ticle Stmulation Method Suited to Vector Com-
puter Architectures. PhD thesis, Stanford Univer-
sity, Dept. of Aeronautics and Astronautics, Stan-
ford CA 94305, December 1989.

[8] J. D. McDonald. Particle Simulation in a Multi-
processor Environment. ATAA-91-1366, 1991.

